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ABSTRACT  In a world seeking environmentally sustainable products, bio-resources are investigated as suitable replacements 

to oil-derived products. Tannin extracts represent one of the most abundant phenolic resources of the earth, with more than 

200,000 T/year. These extractives are constituted mainly of polyphenolic compounds and they are used industrially for various 

purposes, including leather tanning, wine-making, and water clarification.  However, condensed tannin extractives can also be 

easily polymerized, and the resulting bio-macromolecule can be exploited for other applications such as adhesives and coatings. 

In recent years, tannin-based polymers have also been used for the synthesis of fire-resistant insulation foams and outdoor 

wood preservatives. This bio-resource imparts also outstanding water resistance to wood plastic composites (WPCs) and gives 

great antioxidant activity to nanofibrillated cellulose films, which become an interesting material for “active packaging”. This 

literature review covers these four innovative solutions made from tannin extractives from mimosa or black wattle (Acacia 

mearnsii) industrial powder and provides some basic information about the purification of the industrial tannin extract that 

can be suitable for more chemically specific usages. 

Keywords: Green materials; timber protection; natural foams; sustainable packaging; nanomaterials; flavonoid fractions.

 

Introduction 

Environmental sustainability is currently a major focus in 

material science, and bio-based resources are fundamental 

players for producing new materials for the future. Natural 

components with comparable performances to synthetic ones 

represent a major advantage in environmentally-friendly 

engineering. 

In this context, the proper exploration of various bio-

resources will be a winning point for the future bio-economy 

that will rely on biorefineries. In these processes, bio-based 

feedstock’s such as agriculture and forest derived products 

will be transformed into bio-materials and bio-fuels (REDDY 

et al., 2010). 

Wood usage is currently living a new golden age due to 

the unmatched properties of timber - not only because it is 

still one of the most reliable materials for building 

construction purposes, but also because it is CO2 neutral and 

this renders this bio-resource even more attractive. 

Accordingly, the wood components are also becoming 

more valuable. The major components of wood, namely 

cellulose, hemicelluloses and lignin, are already used for a 

wide range of purposes (CARVALHEIRO et al., 2008; 

HUBBE et al., 2008; MOON et al., 2011; RAGAUSKAS et al., 

2014; LIU et al., 2016; HUBBE et al., 2017; TABARSA et al., 

2017). Nowadays, also the extractives representing between 1 

and 10% of the dry wood (UMEZAWA, 2000)  are  becoming 

an interesting feedstock because of their relatively easy supply 

(SCHOFIELD et al., 2001; BELGACEM; GANDINI, 2008; 

ARBENZ; AVEROUS, 2015). 

Extractives are composed of various molecules, such as 

low molecular mass sugars, terpenes and polyphenolics, but 

the types and the relative proportions of the various 

extractives are strongly dependent on the wood species. For 
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wood species like oak, chestnut, pine, quebracho, and 

mimosa, the most abundant chemicals are polyphenols, and 

therefore the extracts are commonly called “tannins”. This 

name, indeed, refers to substances that are able to tan leather 

(HASLAM, 1989). Therefore, the tannins are only the 

polyphenolic substances, whereas the hydrocolloids, sugars, 

and organic acids of the tannin extract are the “non-tannins”. 

The two most common families of polyphenols in plant 

extracts are the hydrolysable and the condensed tannins. The 

former are esters of simple sugars with gallic or ellagic acid 

(ARBENZ; AVEROUS, 2015), while the latter are oligomers 

or polymers of oligomeric flavonoids (proanthocyanidins), as 

shown in Figure 1 (SCHOFIELD et al., 2001; HAGERMAN, 

2002). 

Tannins are the second most abundant phenolic resource 

in nature, just behind lignin. Condensed tannins 

(proanthocyanidins) constitute more than 90% of the total 

world production of commercial tannins (200.000 tons/year) 

and hence the condensed tannins are the most abundant 

extracted natural substances on Earth (JORGE et al., 2001; 

PIZZI, 2008).  

 

Figure 1. Chemical structure of a proanthocyanidin repeating 

unit of condensed tannin. 

 

Among the sources of condensed tannins, the industrial 

tannin extracts from mimosa (Acacia mearnsii De Wild, also 

known as black wattle) are the most sustainable because i) its 

bark contains 30 to 45% of the tannins; ii) the species grows 

fast, with a plantation cycle of 7 years. Statistical data show 

that the surface of planted mimosa increased by 26% during 

the 2010 to 2015 period, reaching 160.000 hectares in 2015 

(IBA, 2016). Regarding the economic use of the raw material, 

the value of the acacia bark is around $90/T, while the wood 

(with a density of 650 kg/m³) is sold at around $30/T 

(AGEFLOR, 2015; DELUCIS et al., 2016). Acacia mimosa 

wood is used mainly for charcoal and pulp production. 

Mimosa tannin extracts are obtained  through hot water 

extraction of bark chips in a counter-current series of 

autoclaves, using different parameters of temperature, 

pressure and time according to the required final properties 

of the extract (ARBENZ; AVEROUS, 2015; MISSIO et al., 

2017b; MISSIO et al., 2018). 

Condensed tannins have been used for centuries for 

leather tanning (PIZZI, 2008), and for decades for the 

production of adhesives (CARVALHO et al., 2014), wines 

(RINALDI et al., 2016), and water filters (BELTRÁN 

HEREDIA; SÁNCHEZ MARTÍN, 2009). More recently, the 

use of these phenolic substances was also examined for their 

antioxidant and antifungal activities in pharmaceutical 

products (WEI et al., 2015; AIRES et al., 2016; MISSIO et al., 

2017b), for coatings (PAN et al., 2015), and for the synthesis 

of advanced ultra-lightweight materials (AMARAL-LABAT 

et al., 2013). In particular, polymers synthesized from mimosa 

extractives resulted in plastics that were less brittle than those 

made from other condensed tannins, and the polymerization 

of mimosa extractives was easier to control (PIZZI, 1994). 

This literature review examines the application of tannin 

extracts from Acacia mimosa for the synthesis of innovative 

materials, such as wood preservatives, insulation foams, wood 

plastic composites, and nanocellulose films. Finally, a short 

overview on the purification method for this phenolic bio-

resource is also provided. 
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New Bio-Based Materials 

Wood Preservation 

Wood can be affected by extrinsic factors that limits its 

service life (CADEMARTORI et al., 2015b; MISSIO et al., 

2016 ). Wood quality decreases with outside exposure, and 

the rate of deterioration is dependent on the timber species 

(LAZAROTTO et al., 2016), the preservative treatment 

applied and the environmental conditions (e.g., weather, soil, 

etc.). Among these, the preservative treatment applied is the 

factor that can be more easily controlled to enhance the 

service life of wood (MAGALHÃES et al., 2012). Over the 

years, many processes have been developed in order to 

protect wood against xylophagous agents (CADEMARTORI 

et al., 2015a) and the severe environmental restrictions 

related to the use of toxic preservatives, like creosote, copper-

chrome-arsenic (CCA) and, more recently, copper-chrome-

boron (CCB) have renewed the interest in finding more 

environmentally sustainable preservatives.  

According to LEBOW (2010), wood preservatives must 

meet two broad criteria: i) they must provide the desired 

wood protection for the intended end use and ii) they must 

do so without presenting unreasonable risks to people or to 

the environment. Therefore, the idea of protecting wood with 

wood-derived preservatives has been studied over the past 

decades by several research groups.  

In this context, tannin-based preservatives are a very 

attractive bio-mimetic solution. Increasing the concentration 

of these substances, already synthesized by the trees to protect 

themselves, helps to protect the wood against biologic and 

UV-light attacks during its service life as a building material 

(HAGERMAN et al., 1998; TONDI et al., 2013b).  

Extractives obtained from mimosa, quebracho and pine 

have shown moderate resistances to biologic attack by fungi 

and termites (TASCIOGLU et al., 2013); this resistance could 

be enhanced with the addition of copper and/or boron salts 

(SCALBERT et al., 1998; YAMAGUCHI; YOSHINO, 2001; 

YAMAGUCHI et al., 2002). However, every study in which 

leaching processes were proposed, serious problems in 

relation to treated wood and water were observed (TONDI et 

al., 2012a; TONDI et al., 2013a). Logically, tannins which are 

obtained by water extraction are also highly soluble after 

application. A novel approach has been proposed to 

overcome the leaching problems by using the in-situ 

polymerization of condensed tannins. Formulations 

containing hexamine as hardener have been proposed and 

such preservatives exhibited outstanding biologic resistance 

against Pycnoporus sanguineus (THEVENON et al., 2008). 

These initial findings obtained with a water-based tannin 

formulation containing hexamine (6%) and boron (<1%) 

resulted in several interesting findings: i) limited tannin and 

boron leaching due to the polymerization; ii) wide-spectrum 

biological resistances (against fungi and insects); iii) 

improved mechanical and fire properties (TONDI et al., 

2012a; TONDI et al., 2012b; TONDI et al., 2013a; TONDI et 

al., 2013b). 

Unfortunately, only moderate weathering resistance was 

observed. Indeed, the rigidity of the tannin polymers and the 

sensitivity against radical degradation strongly affect the 

outdoor application of this formulation (TONDI et al., 

2013a). However, several studies have been performed and 

are still ongoing in order to increase the elasticity of the 

hardened polymers so that this drawback can be solved (HU 

et al., 2017; TONDI et al., 2017). 

 

Tannin Foams 

Other interesting tannin-based materials are the tannin 

foams (Figure 2). These porous materials are obtained by 

copolymerization of the tannin extract with furfuryl alcohol 

in an acidic environment. The obtained copolymer cures 



A. L. Missio et al. (2019) Exploring tannin extracts: Introduction to new bio-based materials 

 

Ciência da Madeira (Brazilian Journal of Wood Science) 91 

 

simultaneously with the evaporation of a low-boiling point 

solvent resulting in a lightweight porous material (TONDI; 

PIZZI, 2009). These tannin foams are black porous solids that 

have a skeletal structure and are completely bio-derived: 

condensed tannin extract represents the largest component 

(60-80%) while furfuryl alcohol, a derivate molecule of 

lignocellulosic biomass and hemicelluloses (AGUILAR et al., 

2002; CLIMENT et al., 2014; CANHACI et al., 2017), is the 

remaining part (20-40%). In the tannin foams, different 

molecules can be added for improving some specific 

properties. Formaldehyde and isocyanates can be used to 

increase the mechanical properties (TONDI et al., 2009; LI; 

RAGAUSKAS, 2012); polyurethanes increase the elasticity 

(BASSO et al., 2014) while polyaniline can be used in order to 

obtain a semi-conductive material (TONDI et al., 2015). 

 

 

Figure 2. Tannin foam and sandwich insulation panels. 

 

The wide range of formulations developed in the last 

decade allows tannin foams to be considered for a large set of 

applications (LINK et al., 2011; KOLBITSCH et al., 2012; 

TONDI et al., 2014 ; TONDI et al., 2015). In particular, the 

light tannin foams have shown low thermal conductivities 

and good fire resistances, which make them an ideal 

insulation material. Hence, these foams have already been 

produced in a semi-industrial scale (TONDI et al., 2016b). 

Interesting properties are observed in different processing 

technologies introduced in recent years. The tannin-furfuryl 

alcohol copolymer can be hardened at room temperatures 

and with external heat sources like conventional ovens 

(through convection), hot-presses (conduction) and 

microwave and IR radiations (LINK et al., 2011; KOLBITSCH 

et al., 2012; TONDI et al., 2014 ). These processing 

modifications further extend the applicability of the material 

because they contribute in shortening the production time. 

Selection of the proper production method can reduce the 

amount of catalyst and hardener required, finally leading to 

the production of a sustainable tannin foam tailored for 

specific applications. 

 

Wood-Plastic Composites 

Wood plastic composites (WPC) are materials containing 

wood-derived resources (e.g., fibers, sawdust, and wood 

flour) combined in a matrix of a thermoplastic polymer (e.g., 

polyethylene (PE) or polypropylene (PP)) (Figure 3). WPCs 

are used in various building construction materials, such as 

flooring, exterior cladding and decking (ASHORI et al., 

2013). These construction materials combine the mechanical 

resistance of wood with the formability and hydrophobicity 

of the polyolefin.  

The advantages of WPCs are that they are more 

environmentally sustainable than plastic alone, and they offer 

higher durability, lower maintenance and higher abrasion 

resistance than wood alone (EL-HAGGAR; KAMEL, 2011). 

Polymeric composites can be made using a matrix of high 

density polyethylene, HDPE (ZADOROZHNYY et al., 2016), 

polyethylene glycol, PEG (TSUBOI et al., 2016), polyethylene 

terephthalate, PET (MERIJS MERI et al., 2014), or polyvinyl 

chloride, PVC (YAZDANI et al., 2016). However, 

polypropylene, PP (MATTOS et al., 2014; CADEMARTORI 

et al., 2015c; CADEMARTORI et al., 2017) is used more 

widely for applications like automotive components, 

electrical devices, food packaging and household equipment 

(IZZATI ZULKIFLI et al., 2015). Its leading position in the 

WPC market is due to the combination of economic 
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(THAKUR et al., 2014a; THAKUR et al., 2014b) and 

technological performance factors (AYRILMIS et al., 2015). 

Various lignocellulosic resources, like sugar cane fibers, 

ramie, jute, flax, pineapple, sisal, coconut fiber, castor seed 

cake, cotton, pupunha cover and wood residues, have been 

used to derive fibers and flours used in composite plastics 

(SATYANARAYANA et al., 2009; MAGALHÃES et al., 2013; 

MATTOS et al., 2014; CADEMARTORI et al., 2015c). 

Nevertheless, the market is largely dominated by WPCs 

where the lignocellulosic resource is wood (WOOD-

PLASTIC, 2017). 

The main technological drawback for producing WPCs is 

the limited adhesion affinity between the wood and the plastic 

matrix components. Substances that “bridge” these two 

materials are called compatibilizers and their use for this 

material represents the principal scientific frontier. Until 

now, one of the best known WPC compatibilizer is maleic 

anhydride (TUFAN et al., 2015) which contributes in 

increasing the mechanical strength of the composite. 

Recently, renewable substances, like lignin, have been used 

successfully as a WPC compatibilizer. They increase the 

thermal stability and the storage modulus of the resulting 

composites (LEE et al., 2015). These positive results 

encouraged the investigation of other bio-resources as 

compatibilizers, like tannins, which have smaller molecular 

structures when compared to lignin but retain similar 

functional groups and structure. Furthermore, this bio-

resource presents less variability than lignin resulting in a 

more consistent and reliable compatibilizer. 

These studies have highlighted that the mimosa tannins 

plays an active role in filling the gap at the interfaces between 

PP and wood and this compatibilization was confirmed by 

the enhanced storage modulus and hydrophobicity of the 

WPCs surface (MISSIO et al., 2017a). 

 

Figure 3. Examples of raw material components in WPC products. * PEAD = high density polyethylene; PET = Polyethylene 

terephthalate; PP = Polypropylene. 
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Nanocellulose-Tannin Films 

Thin films and bags are extensively used in packaging for 

the protection of delivered goods from dirt, germs and liquid 

or gas contaminations (MCKEEN, 2013). These films are 

usually prepared from polypropylene (PP), low-density 

polyethylene (LDPE) and linear low-density polyethylene 

(LLDPE) since these plastics are readily available, have low 

cost and light weight, and are inert. In Europe, 49 million 

tons/year of oil-derived plastics are produced, of which 

almost 40% are used for packaging purposes (PLASTIC, 

2017). This trend is no longer sustainable and the need for 

more natural alternative materials with similar properties is 

growing exponentially (DE LÉIS et al., 2017; WANG; 

WANG, 2017). 

Simultaneously, the packaging industry is beginning a 

“new age” in which the packaging simply being inert and 

impermeable is not sufficient. Delivered goods may require 

also some chemical support (such as antioxidant and 

microbiological properties) during the storage phase and 

therefore “active packaging” was created (EU, 2009). These 

materials interact with the goods to be protected by releasing 

antioxidant or antimicrobial compounds into the items to 

enhance preservation (AL-NAAMANI et al., 2016; DE 

VIETRO et al., 2017), resulting in prolonged shelf-life. 

Future trends indicate that a new frontier of research in 

this field is the synthesis of active packaging using 

environmentally sustainable resources. Interestingly, trees 

provide the basic chemical components to produce active 

package for the future: cellulose and tannin (Figure 4) 

(MISSIO et al., 2018). 

Cellulose is the most abundant biopolymer on earth; its 

production is estimated at about 1011 tons per year. Cellulose 

can be found in nature in two forms. The first form is called 

pure cellulose and is present in cotton, some algae cellulose, 

and bacterial cellulose. The second form is called complex 

cellulose, which is present in most plants found in nature as a 

fundamental component of the cell wall (PECORARO et al., 

2008). 

The recent addition to the environmental scenario and 

sustainability in new product development, cellulose, more 

specifically, fibrillated or nanofibrillated cellulose (or 

cellulose nanofibers – CNFs) can play an extraordinary role 

(VALLE-DELGADO et al., 2016; HUBBE et al., 2017). CNFs 

have dimensions of approximately 5-60 nm in diameter and 

lengths of few micrometres; these nanofibers are produced 

through a mechanical fibrillation (friction), and in some cases 

with the aid of chemical or enzymatic pre-treatments, of 

cellulosic pulps (IWAMOTO et al., 2008; ISOGAI et al., 2011; 

KLEMM et al., 2011). One of the main attributes of CNFs – 

individually or in a nanocellulose matrix, which adds to their 

value - is the high mechanical strength, such as the high 

modulus of elasticity that ranges between 10 to 150 GPa 

(IWAMOTO et al., 2009; LEE et al., 2012).  

The production of nanocellulose films is similar of nano-

papers (URRUZOLA et al., 2014). Nanofibrils suspended in 

water generate a gel that, after filtration, produces a very 

dense film (SEHAQUI et al., 2010). These films show 

interesting combination of high modulus of elasticity, tensile 

strength and barrier properties (water and/or gas diffusion) 

when dry. This makes such films attractive for industrial 

applications like bio-based packaging, even if they still 

present high susceptibility to moisture and water (MOON et 

al., 2011; LAVOINE et al., 2015; LAVOINE et al., 2016; 

HUBBE et al., 2017). 

When tannin was embedded within the nanofibrillated 

cellulose, the resulting film showed highly antioxidant 

activity when in contact with water, and this may also 

represent a certain protection against fungi (YAMAGUCHI 

et al., 2002; PIZZI et al., 2004; TONDI et al., 2013b; MISSIO 

et al., 2017b).  
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Figure 4. Films formed from nanocellulose and tannin. 

 

It was observed that nanocellulose films impregnated with 

tannin result  in a film surface that is more hydrophobic than 

pure nanocellulose films, which is due to an intimate 

interconnection between the flavonoid tannin and the 

cellulose (MISSIO et al., 2018). Such a new, naturally derived 

material represents one of the most promising “active 

packaging” materials with antioxidant properties (OLEJAR et 

al., 2014; ZHOU et al., 2016). 

 

Tannin Purification and Fractionation 

The four innovative materials mentioned in the previous 

sections have the great advantage of using an industrially-

available material. However, the presence of non-tannins in 

the raw tannin powder limits the application of this bio-

resource when more controllable applications are needed. 

Hence, purification of the industrial extract is required when 

the tannin has to be utilized for more advanced purposes 

(Figure 6) (MISSIO et al., 2017b). 

The tannin industrial raw material containing “non-

tannins” can be produced and used in large volumes for low 

value products (e.g. leather tannin, water treatments). 

Conversely,  after purification, a lower yield of higher value 

added products is also possible for specific purposes (e.g. 

films/packages, foams, compatibilizers and antioxidants) 

rendering the purification process economically viable 

(LUONG et al., 2012). In addition, diversifying the use of raw 

materials and processing technologies, as well as reducing 

dependence on the production of only one product, can 

provide new combinations needed in different market areas 

(GHATAK, 2011). For instance, secondary metabolites, such 

as gums, terpene resins and tannins that are derived from 

forest resources, can be used for the production of high value-

added chemicals, such as cosmetics, pharmaceuticals, animal 

feeds and food flavours (NAIK et al., 2010). 

The separation of wood extractives has a long history. The 

main process of tannin fractionation is countercurrent 

chromatography (PUTMAN; BUTLER, 1985). The 

chromatography process usually uses a Sephadex LH-20 

column (TIBE et al., 2013), or newer techniques, such as 

supercritical fluid and ultrasound assisted extraction 

(PANSERA et al., 2004; SOUSA et al., 2014 ). These methods 

required complex analytical techniques and expensive 

equipment; hence, easier fractionation methods have been 

developed. In fact, very few studies  have been published on 

this topic (TENG et al., 2013; TENG et al., 2015) even though 

the Soxhlet method has been shown to efficiently fractionate 

other hydroxy-aromatic compounds such as lignin (YUAN et 

al., 2009; LI; MCDONALD, 2014). Hence, black liquor can be  
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Figure 6. Various tannin fractionation methods and resulting purified fractions 

 

decontaminated and fractionated to yield phenolic 

monomers of high commercial value (ERDOCIA et al., 2015) 

to be used as biofuels (GORDOBIL et al., 2016), rigid foams 

(LI; RAGAUSKAS, 2012; XUE et al., 2014; TONDI et al., 

2016a) and composite additives (GORDOBIL et al., 2015; 

SPIRIDON et al., 2015). 

In general, fractionation using organic solvents is 

characterized by successive extractions with different solvent 

polarities in order to purify the raw material into fractions 

containing specific molecular weights components with 

specific characteristics.  

Accordingly, fractions with different molecular weights, 

antioxidant capacities, condensed tannins, ash levels and 

phenolic contents can be obtained, each of which can be used 

for targeted purposes (MISSIO et al., 2017b). Specific tannin 

fractions can also be isolated through sequential solvent  

 

extractions when particular chemical compositions are 

required.  

 

Conclusions 

Tannin is a very interesting bio-resource for many 

applications and recently several new bio-based materials 

containing considerable amounts of tannin were successfully 

produced.  

i) Timber preservatives based on tannins have shown very 

high biological and water resistance, and are already found 

suitable for indoor wood preservation. 

ii) Insulation foams derived from tannin and furfuryl 

alcohol present low densities, low thermal conductivities and 

high fire resistances, resulting in an alternative product to 

synthetic commercial foams, such as polystyrene and 

polyurethane. 
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iii) Wood and polypropylene can be compatibilized with 

tannin in WPCs, increasing the storage modulus and surface 

hydrophobicity.  

iv) Films of nanofibrillated cellulose fortified with tannin 

have shown higher hydrophobicity and antioxidant activity, 

producing a new composite with strong potential as active 

packaging material for food and pharmaceutical goods. 

The purification of industrial tannin extracts by targeted 

fractionation processes allows production of fractions that 

can be explored for improving the properties of the already 

produced tannin-based materials of for the synthesis of 

chemically controlled materials such as ordered aerogels, 

xerogels or slow chemically releasing structures. 
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