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Abstract: More than 50 years ago Noam Chomsky proposed that language 
acquisition is domain specific and depends on innate knowledge. This article 
introduces computational models of language acquisition challenging this 

proposal. Early models (e.g., Elman, 1991) showed that mechanisms not 
specific to language can simulate important aspects of language acquisition. 
More recent models using as input samples of child-directed speech have 
successfully simulated the performance of language-learning children in 
respect to both their successes and their limitations (e.g., processing of higher 
order recursion). Further, many current computational models directly 
incorporate insights from previous ones and from experiments performed with 
children. The computational work shows the potential to provide a model of 

language learning that does not depend on domain specific mechanisms and 
suggests that the Chomskyan dictum needs to be re-evaluated. 
Keywords: Language acquisition. Innatism. Computational modeling. Noam 
Chomsky. 
 
 
Título: Modelos Conexionistas e o Debate Nativista 

Resumo: Há mais de 50 anos, Noam Chomsky propôs que a aquisição da 

linguagem fosse um domínio específico e dependente de conhecimento inato. 
Esse artigo apresenta modelos computacionais de aquisição de linguagem que 
desafiam essa proposta. Modelos iniciais (e.g. Elman, 1991) mostraram que 
mecanismos não específicos à linguagem são capazes de simular aspectos da 
aquisição de linguagem. Modelos mais recentes, utilizando como input 
amostras de fala dirigida a crianças, têm tido sucesso em simular a 
performance de crianças em processo de aprendizagem da linguagem no que 
diz respeito tanto aos êxitos quanto às limitações delas (e.g., processamento de 
recursões de níveis mais altos). Além disso, muitos modelos computacionais 

atuais incorporam diretamente insights de modelos anteriores e de 
experiências realizadas com crianças. O trabalho com computadores tem 
apresentado o potencial de fornecer um modelo de aprendizagem de linguagem 
que não depende de mecanismos de domínio específico e sugere que a máxima 
chomskyana tenha de ser reavaliada.  
Palavras-chave: Aquisição de Linguagem. Inatismo. Modelamento 
Computacional. Noam Chomsky. 
 

 

1. Introduction 
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Over the last decades computational models of language 

acquisition have become increasingly important as a tool to 

challenge the Chomskyan dictum that language acquisition is 
domain specific and depends on innate knowledge. This dictum 

is based on the assumption that it is impossible to learn human 

language from the available input (linguistic environment) 

without explicit negative feedback (error correction; Gold, 1967). 
Therefore, Chomsky postulated that much of our linguistic 

knowledge is innate. The dictum can be challenged in two 

different ways.  
First, if it can be shown that the linguistic input contains 

enough information so that general-purpose mechanisms can 

achieve human-like performance, then this supports the claim 
that the universal grammar (UG) postulated by Chomsky is not 

necessary for language acquisition. Second, if connectionist 

and/or other computational models succeed in simulating 

language acquisition, then this may shed light on the nature of 
the mechanisms involved in human language acquisition. If 

models also succeed in other cognitive domains, then this can 

lend support to the hypothesis that human language relies on 
domain-general mechanisms. Neither of these challenges rules 

out that human learners depend on UG. So the task of 

computational modeling is not to refute the Chomskyan dictum 

but to provide motivation for alternative research strategies. 
In this paper I discuss computational models that simulate 

important aspects of language acquisition. Statistical regularities 

of language provide a wealth of implicit information to the young 
language learner. Several models rely on these statistical 

regularities to succeed in tasks such as speech segmentation, 

multiple cue integration, acquisition of complex aspects of 
syntax and semantics, and processing of recursive linguistic 

structures. Throughout I introduce criticisms of connectionist 

modeling and show how researchers have responded to those 

criticisms. I begin with an overview of the pioneering work by 
Jeff Elman. This work has shown the potential of connectionist 

modeling but did not resemble closely the conditions under 
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which children acquire language. For this reason I also introduce 
several models that rely on samples of child-directed speech as 

input, use input from several languages, and incorporate findings 

from earlier modeling.  
 

2. The beginnings of connectionist modeling and early criticism 

 

2. 1. Elman’s Early Connectionist Models 
Elman (1990) has pioneered the use of connectionist models 

(simple recurrent networks, SRNs) for language acquisition 

simulation. He has argued that the use of recurrent links provides 
networks with a dynamic memory

1
. “In this approach, hidden 

unit patterns are fed back to themselves; the internal 

representations which develop thus reflect task demands in the 
context of prior internal states” (Elman, 1990, p. 179). Elman 

claims that connectionist networks can ‘learn’ to solve relatively 

simple problems such as the temporal version of the exclusive 

‘or’ (XOR) function and even ‘discover’ syntactic and semantic 
features of words.  

To represent temporal order in parallel- distributed 

language-processing models is challenging because the linguistic 
input is sequential. There were two previous approaches before 

Elman's: (i) to represent time spatially in the model or (ii) to use 

recurrent links so the network uses its own previous output in 

processing the current input. Elman improved on these solutions 
(both computationally and cognitively). He uses recurrent links 

from the hidden units (the network’s internal state) so the current 

processing is influenced by the previous internal state. This is 
done by a context layer that copies the hidden unit activations 

(for detailed description see Elman 1990, pp. 182-186). Using 

this method time is represented implicitly by the effect that it has 

                                                   
1 There is a long-standing philosophical debate about the justification of using 

intentional terminology (e.g., ‘memory’, ‘training’, ‘learning’, ‘knowing’) when 
referring to connectionist networks and other computational models. These 
concerns have been acknowledged by researchers, and currently no one takes 
these terms to apply in their literal meaning to computational models. For this 
reason I refrain from using scare quotes when referring to these terms.  
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on processing (the network has a ‘memory’).  Now the network 
behaviour (output) is shaped by current input and the networks 

previous internal states. This is done “to represent time implicitly 

rather than explicitly [in parallel distributed processing nets]. 
That is, [to] represent time by the effect it has on processing and 

not as an additional dimension of the input” (Elman, 1990, p. 

180). 

Elman showed that SRNs are capable of learning more 
complex language-relevant structures. For example, the networks 

could acquire a notion functionally equivalent to ‘word’ as a 

consequence of learning the sequential structure of letter 
sequences that form words and sentences but are not explicitly 

marked as such (Elman, 1990, pp. 191-194). And even more 

complex relationships are mirrored in the surface structure 
available to connectionist nets. The order of words in sentences 

reflects a number of constraints, such as syntactic structure, 

selective restrictions, subcategorization, and discourse 

considerations (Elman, 1990, p. 194). The networks were able to 
‘learn’ word order and simple sentence structure and to 

categorize syntactic information (noun vs. verb categories) and 

semantic information (foods, animals etc.), based on cues 
available in the surface forms. This indicates that the information 

about alleged ‘deep’ structure is implicit in the surface structure 

of spoken language and some aspects of language can be learned 

based on surface structure alone (Elman, 1990, pp. 194 -203). 
 

2.2. Criticism of Early Connectionist Simulations  

Impressive as Elman’s simulations might be, one needs to be 
clear about what they show and what they do not show. This is 

important because much criticism has been directed at claims 

that have not been made by Elman (or other connectionists).  
One of the most severe criticisms is that connectionists are 

empiricists who advocate that the mind is originally a blank slate. 

Hence, connectionist work can not be relevant to human 

cognition. This view has been expressed repeatedly by Chomsky: 
“empiricism insists that the brain is a tabula rasa, empty, 

unstructured, uniform at least as far as cognitive structure is 
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concerned” (Chomsky, 1977, p. 2) and there are “empiricist 
currents, that would have us believe that the human mind is 

empty, a tabula rasa” (Chomsky, 1980a, p. 270). More recently 

the same view was expressed by James McGilvray
2
: 

“[connectionists’] claim that the mind is made up of ‘neural nets’ 

is innocuous; it is their claim about the initial state of the net 

(undifferentiated, approximating Locke’s blank slate) and their 

view about how this net gets its ‘content’... that place them 
firmly in the empiricist camp” (McGilvray, 2009, p. 110).  

McGilvray seems to assume that untrained networks are 

blank slates, because connectionist learning starts with random 
weights. Inputs produce random activations and the output errors 

are used to adjust the connection weights. A network at time 0 

would be a blank slate. However, the assumption that entirely 
unconstrained learning can produce any interesting results is 

incorrect. Some connectionists may have believed that in the 

early days of connectionism (Elman, p.c.), but it was quickly 

discovered that some constraints need to be built in the initial 
network (see below). So even at time 0 it is not a blank slate. 

My extensive review of recent connectionist literature 

finds no evidence for the blank-slate position. It reveals, instead, 
that several researchers have explicitly or implicitly rejected 

completely unconstrained ‘blank slate’ views of language 

acquisition (e.g., Hare & Elman, 1995; Elman et al., 1996; 

Redington & Chater, 1998; MacWhinney, 2000; McDermott, 
2001; Solan et al, 2005; Edelman & Waterfall, 2007; Chater & 

Christiansen, 2009). Explicit rejections of the blank slate view 

could indicate that early connectionist work might have had this 
flaw but that it has been corrected by now. Several points are 

important when dealing with this possibility. 

                                                   
2 Claims to the contrary not withstanding (e.g., that he has “repeatedly, 

consistently, and clearly insisted that all rational approaches to the problem of 
learning, including ‘associationism’ and many others ... attribute innate 
structure to the organism” (Chomsky, 1983, p. 310)), Chomsky still implicitly 
holds that connectionists are committed to the blank slate view, because he did 
not object to this remark by McGilvray in the introduction to Cartesian 
Linguistics which Chomsky read and commented on “early in 2008” 
(McGilvray, 2009, p. 6). 
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First, there is an ontological point. While some 
connectionist researchers may initially have claimed that 

networks were basically blank slates, this was a 

misunderstanding on their part. In fact, no network is ever a 
blank slate. There are always built-in constraints, although they 

may not always be recognized. These constraints can take the 

form of ‘maximize discriminability of input strings’, ‘minimize 

processing time’, etc. Constraints also can be in the learning 
algorithm itself. Further, the structure of the network’s 

architecture also provides a very real and powerful constraint on 

what can be learned (Elman, p.c.). Thus, even though 
connectionists and critics alike may have believed at one point 

that nets were tabulae rasae, McGilvray’s claim that the initial 

state of connectionist nets ‘approximates Locke’s blank slate’ is 
incorrect. 

Second, in addition to the constraints that were ‘built into’ 

the connectionist networks, the models acquired additional 

structure through their interaction with the language input. Elman 
discussed this issue already in 1990. His claim was not that a 

completely unstructured neural net could acquire any language 

related structure. Instead, he claimed that some structure that was 
not initially in the network could be acquired through repeated 

exposure to language-like input. For example, Elman’s work 

showed that nouns and verbs produce different activation 

patterns (in trained SRNs). These aspects of language structure 
were not initially present in the networks, but learned from 

exposure to the input. If one takes Chomsky’s surface/deep 

structure distinction seriously, accounting for the fact that the 
interaction with the input changes the structure of the networks is 

important. Yet, Elman was able to show that a similar structuring 

arises over time when connectionist networks are exposed to 
language input: 

 
The representations need not be ‘flat,’ atomistic, or 

unstructured. The sentence task demonstrated that sequential 

inputs may give rise to internal representations which are 

hierarchical in nature. The hierarchy is implicit in the 

similarity structure of the hidden unit activations and does 
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not require an a priori architectural commitment to the depth 

or form of the hierarchy. Importantly, distributed 
representations make available a space which can be richly 

structured. (Elman, 1990, p.208, emphasis added) 

 

Elman does not claim that nets are initially completely 

unstructured blank slates but that they do not need to have one 

specific fixed (innate) structure in order to solve the sentence 
task. He suggests the task does not require such narrow 

structuring because in the case of language much of the structure 

is contained in the input: “What is exciting about the present 
results is that they suggest that the inductive power of the PDP 

approach can be used to discover structure and representations in 

tasks which unfold over time” (Elman, 1990, p. 209, emphasis 

added). For Elman the connectionist models can help uncovering 
how much of the structure contained in language output can be 

acquired from the structure of the input. But this does not entail 

that just any network could succeed in this task. Other 
researchers have stressed the same point: 

 

[models] provide insight into which aspects of network 

performance are due to architectural biases and which arise 

due to learning. A network always has some bias with respect 

to a particular task, and this bias is dependent on a number of 

factors, such as overall network configuration, the nature of 

the activation function(s), the properties of the input/output 
representations, the initial weight setting, etc. (Christiansen & 

Chater, 1999, p. 195) 

 

Thus, the simulations will also help to discover how much 

structure needs to be ‘built in’ to the networks and whether or not 

this structure needs to be task specific. This leads to a second 
common criticism of connectionist models. It is often alleged that 

general-purpose learning mechanisms are, in principle, not able 

to solve the language-learning task (e.g., Chomsky, 1959, 1966, 
1975a, 1986a, 2005, 2012; Marcus, 1993; Smith, 1999; Crain & 

Pietroski, 2002; McGilvray, 2005, 2009). 

This criticism was initially leveled against behaviourism. 

But over the years it has become a criticism of any language-
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acquisition account that does not posit innate domain-specific 
knowledge and/or mechanisms. Consider: 

 
...people argue that environmental factors are critical but 

without offering any account of the facts in question in terms 

of such alleged factors. And as long as they don't produce any 
moderately plausible account in terms of presumed 

environmental factors, all I can say is that they’re not holding 

my attention. It is not very interesting if somebody claims 

that something is the result of the environment or an act of 

God or electrical storms in the vicinity, or whatever, if they 

don't provide some explanatory scheme that can at least be 

investigated. (Chomsky, 1993, p. 4) 

 

Examining Elman’s work reveals that he did not commit 
the sins Chomsky (1993) alleges. Elman (1990, 1993, 1999) has 

attempted to show that the language input (=environment) 

contains information that is relevant and important for language 

acquisition. The input does to some degree determine the output. 
However, Elman also has shown that the relationship between 

input and output is not merely one of stimulus-response. If this 

were the case, the connectionist nets would fail in any tasks that 
require dealing with previously unencountered examples. Elman 

claims that some of the information that allows the nets to deal 

with new examples is contained in the input. However, he never 

claimed that all the relevant information is ‘in the environment’. 
Instead, he specifically acknowledges that the information 

contained in the input alone is insufficient: 

 
While it is undoubtedly true that the surface order of words 

does not provide the most insightful basis for generalizations 

about word order, it is also true that from the point of view of 

the listener, the surface order is the only visible (or audible) 

part. Whatever the abstract underlying structure be, it is cued 

by the surface forms, and therefore, that structure is implicit 

in them. (Elman, 1990, p. 195) 

 

Here Elman suggests that it might be possible to use 
regularities “on the surface” (the language available as input) to 
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uncover regularities in the ‘abstract underlying structure’. It is of 
course possible that this approach will turn out to be wrong. 

However, it is not the case that Elman does not “produce any 

moderately plausible account in terms of presumed 
environmental factors” (Chomsky, 1993, p. 14). Quite to the 

contrary, he offers a detailed account of the input (= presumed 

environmental factor) he uses for his simulations (Elman, 1990, 

pp. 187-188, 193, 195-196, 200). Furthermore, it is not true that 
he appeals vaguely “to ‘similarity’ or ‘generalization’ without 

characterizing precisely the ways in which a new sentence is 

‘similar’ to familiar examples or ‘generalized’ from them” 
(Chomsky, 1971, p.48). Quite to the contrary, Elman carefully 

specifies in which ways the novel sentences are similar to those 

the nets encountered during training (Elman, 1990, pp. 195 - 
197). He outlines details regarding the experimental procedure, 

the input, the expected output and the actual performance of the 

nets. 

Elman continued his work on SRNs and explored, for 
example, the learning of sentences with embedded clauses 

(Elman, 1991), and complex embedded structures (Elman, 1993). 

The latter work showed that tasks, traditionally thought to require 
an explicitly recursive computational structure, could be solved 

by the simple network architecture of an SRN. Here Elman also 

attempted to implement the insight that in humans “learning and 

development interact in an important and non-obvious way. 
Maturational changes may provide the enabling conditions which 

allow learning to be most effective” (Elman, 1993, p. 72). He 

demonstrated that in some circumstances, SRNs that are trained 
to represent part/whole relationships and embedded clauses of 

complex sentences “work best when they are forced to ‘start 

small’ and to undergo a developmental change which resembles 
the increase in working memory which also occurs over time in 

children” (Ibid.). In other cases, ‘learning’ can only occur when 

the entire data set is available to a network (e.g., Harris, 1991). 

Elman claims that “the deeper principles which underlie learning 
in the general class of connectionist systems which rely on error-

driven gradient descent techniques... interact with characteristics 



Connectionist Models and the Nativist Debate 

Linguagem & Ensino, Pelotas, v.17, n.1, p. 87-128, jan./abril 2014 96 

of human development in a beneficial manner” (Elman, 1993, p. 
72). Given that infants also start with limited memory capacity 

and only pay attention to a small segment to the linguistic input 

they receive, connectionist networks simulate one important 
aspect of human learning in general and language acquisition in 

particular. 

Elman’s approach has been critiqued by Rohde and Plaut 

(2003), who suggest that artificial languages that only contain the 
relevant syntactic information are not a good representation of 

human languages. Human subjects rely to a considerable degree 

on semantic information when processing sentences that contain 
long-distance dependencies and it is questionable that SRNs that 

are deprived of access to semantic information perform a task 

that is sufficiently similar to the task faced by human children. 
For this reason Rohde and Plaut performed experiments using an 

artificial language that provided syntactic as well as semantic 

information
3
 (for details see Rohde & Plaut, 2003, pp. 2-4). 

Unlike Elman they found that networks that were exposed to 
complex constructions throughout training outperformed those 

that ‘started small’. “Under no condition did the simple training 

regimen outperform the complex training” (Ibid., p. 5). These 
authors believe “that recurrent connectionist networks already 

have an inherent tendency to extract simple regularities first” 

(Ibid., p. 18). The network first learns short-range dependencies 

and considers long-range constraints as noise. Once the short-
range dependencies are learned, the network can use the available 

information to learn long-distance dependencies. This is an 

‘innate’ constraint, but it is not domain specific. Similarly, in 
children the specific stages of language acquisition could be 

caused by a cognitive “system that is unorganized and 

                                                   
3 One of the models used stochastic units and a single layer of weights and 

learned to map from the semantic features of the three or four main constituents 
of the sentence to the semantic representations for the fillers of up to four 
thematic roles: agent, patient, instrument, and modifier (p. 7). 
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inexperienced but possesses great flexibility and potential for 
future adaptation, growth and specialization” (Ibid., p. 21). 

The SRN simulations discussed so far focus on the 

acquisition of syntactic structure, which is just a small part of the 
overall language-learning process. The promising results do not 

imply that all aspects of language acquisition can be modeled by 

connectionist nets. But they challenge the claim that “there is no 

reason to take empiricist speculations at all seriously ... [because] 
the apparent aim is not to explain facts of human language and 

concepts and their growth” (McGilvray, 2009, p. 23). If it can be 

shown that the ‘learning’ in connectionist nets resembles that of 
human children in important aspects, then this work should be 

taken seriously. The findings of connectionists can help to 

determine the path of further research. For example, this research 
can help to determine whether or not we need to postulate 

complex internal representations in order to account for language 

acquisition and processing. Using a simulation that did not 

contain such representations was an exploratory step with not 
necessarily expected results: “The approach described here 

employs a simple architecture, but is surprisingly powerful” 

(Elman, 1990, p. 207). 
Elman’s models allow us to draw some conclusions 

regarding the ability of simple mechanisms to acquire language 

relevant ‘knowledge’. However, they were neither replicating 

what children do when they acquire language nor based on the 
input children would typically receive. In the next section I 

discuss models that use child-directed language as input and 

better address the challenge that modeling has nothing to do with 
the conditions under which children acquire language. I focus on 

precise models “that can be tested, refined or rejected on the basis 

of publicly available data and/or replicable experiments” 
(MacWhinney, 2010, p. 477). 

 

3. Recent computational models of language-acquisition 

 
Over the last 20 years researchers have refined computational 

models and many of these models rely on “corpora of 
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spontaneous adult–child interactions made available through the 
Child Language Data Exchange System (CHILDES)” 

(MacWhinney, 2010, p. 477). These CHILDES corpora consist 

of recorded samplings of adult speech that serves as input to 
language-learning children. MacWhinney suggests that “the job 

of the computational modeler is to determine a set of algorithms 

that can take the child-directed speech (CDS) as input and 

produce the learner’s output (LO) at successive developmental 
levels” (MacWhinney, 2010, p. 477). This means the input for 

the models resembles closely the input children receive, and the 

models are informed by the developmental stages that are typical 
for children. Children have to acquire a complex set of skills long 

before they are able to comprehend and produce complex 

grammatical structures. Recent computational models attempt to 
simulate several of the important steps that children take on the 

road to language. It would lead too far afield to discuss all 

relevant models here, so I focus on some of the important 

milestones. 

 

3.1. Models of Speech Segmentation 

Recently researchers have attempted to use computational 
models to simulate speech segmentation acquisition. Infants need 

to learn to segment the continuous stream of language input into 

individual words. They master this skill in the course of several 

months. Potentially there are many ways to achieve speech 
segmentation. But only modeling some of them will give us a 

better understanding of how children might accomplish this task. 

Researchers are aware of this and have tested a variety of them 
by now: “Previous developmental models of speech 

segmentation differ substantially across a number of parameters, 

including whether the model builds a lexicon, segments words by 
clustering smaller units or breaking down larger units, or 

incorporates external constraints on performance” (Monaghan & 

Christiansen, 2010, p. 546). The performance of these models on 

essential criteria differs. For example, some models achieve a 
high degree of precision (correct identification of words from the 

input) but rely on mechanisms that are not psycholinguistically 
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plausible (e.g., access to the complete input, no memory 
limitations, optimal learning). However, even 

psycholinguistically implausible models can provide us with a 

better understanding about the information content of the input. 
If it turns out that the information present in the input alone is 

sufficient for speech segmentation, then this task does not 

necessarily depend on innate domain specific ‘knowledge’. 

Monaghan and Christiansen assume that the information 
contained in the input is helpful in the acquisition of speech 

segmentation. However, they are not only looking for a 

mechanism that can extract the relevant information from the 
input but are also attempting to provide a model (PUDDLE) that 

closely resembles how children accomplish this task. As input for 

this model they use speech spoken by adults in the presence of 
children aged 2 years, 6 month or younger (six English CDS 

corpora from the CHILDES database) (MacWhinney, 2000; for 

complete details see Monaghan & Christiansen, 2010, pp. 552-

554). This input for the model is similar to input received by 
children who learn language. 

PUDDLE is similar to young children in several aspects. 

Like children, the model builds its lexicon incrementally from 
the input. This ‘strategy’ does not require that the model makes 

multiple, simultaneous decisions about the match between a 

given utterance and the acquired lexicon. Just like young 

children, the model is initially unable to perform complex 
cognitive tasks simultaneously. PUDDLE simulates how children 

can take advantage of features that are readily accessible in CDS 

and can accommodate learning. The model performs like a child 
because “the memory resources and computational requirements 

are minimal” (Monaghan & Christiansen, 2010, p. 248) 

Monaghan and Christiansen were especially interested in 
two of the readily accessible features of the input: (i) utterance 

boundaries and (ii) the interspersal of high frequency words in 

speech (Ibid.). As the results show, these two cues in 

combination can go a long way towards correct speech 
segmentation. This is because CDS contains a relatively high 

percentage of single word utterances (26% in the CHILDES 
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corpus), and some of these words occur frequently (e.g., the 
child’s name). Treating utterances as words and recording the 

frequency of words allows PUDDLE to build up a lexicon 

incrementally, and items from the lexicon are in turn used to 
determine ‘new’ words (e.g., parts of utterances that precede or 

follow an item already in the lexicon). It was possible to show 

that a small set of frequently occurring words can help in 

“carving up the rest of the speech stream into its constituent 
words” (see Monaghan & Christiansen, 2010, p. 250, for full 

details). The performance of this model, which relies on a very 

simple algorithm for discovering words, was impressive. 
Depending on the corpus used, the recall was 70-79%, meaning 

that PUDDLE identified between 70-79% of the words that were 

contained in the input. Precision was 70-76%, meaning that 70-
76% of the words identified by PUDDLE were indeed words 

from the input. This may sound like substantially less recall and 

precision than children might achieve. However, we need to keep 

in mind that the model was only exposed to 10.000 utterances in 
total and that it did not have access to numerous other cues that 

are used by children (e.g., acoustic, phonological and prosodic 

cues; for overview see Monagahan & Christiansen, 2008). These 
results suggest that all the information contained in the input 

might be sufficiently rich for speech segmentation and that this 

information might be extracted with relatively simple 

mechanisms. 
One might object that there is not enough acoustic 

variability in the input used for PUDDLE. Children have to 

succeed with the word-segmentation task after exposure to input 
that varies between speakers, and even between different 

utterances of the same speaker (Newman et al., 2006; Newman, 

2005; Brent & Siskind, 2001; for proposed solution see 
Christiansen & Allen, 1997). While competent speakers can rely 

on context and other cues to disambiguate and/or recognize 

unclearly or mispronounced words, infants lack this knowledge. 

For modeling, the CHILDES data are transcribed, and in the 
process incorrect utterances, mispronounced words, etc. are 

eliminated. It has been argued that models relying on this 
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‘sanitized’ input do not provide a realistic simulation of language 
learning (McGilvray, 2009; Chomsky, 2007; Smith 1999). To 

address this challenge Rytting et al. (2010) developed a method 

to test whether models can deal with probabilistic, speech-
derived input which “is more realistic than the types of 

transcripts usually used to train and test computational models of 

word segmentation” (Ibid., p. 514). They used as input 

“recordings of four mothers... directed at infants age 0;9 to 
0;10.26” (Ibid., p. 525). From this input they removed 

‘problematic utterances’ such as “whispered or sung speech; 

unintelligible, untranscribed or partial words; word play or pet 
names... [leaving] 13,443 utterances for the four mothers” (Ibid.), 

but left utterances that were clearly audible yet grammatically 

incorrect or incomplete. They found that the performance of 
SRNs and models used by other researchers (e.g., Christiansen et 

al. 1998) “is robust for data with subsegmental variation when 

this variation is carefully controlled” (Ibid., p. 530), but that an 

increase in variation leads to a significant degradation of the 
performance. 

Rytting et al. hypothesized that increased variability in the 

input “compromises the reliability of the segmental cues, such 
that it is no longer possible to find word boundaries using these 

cues alone” (Ibid., p. 531). The authors then tested the impact of 

additional cues (e.g., dictionary-derived stress cues and 

hyperarticulation of word-initial syllable cues) and found that 
when the models are “faced with highly variable, potentially 

ambiguous input, multiple probabilistic cues still outperform 

each cue separately” (Ibid., p. 536). These findings indicate that 
natural language contains an abundance of cues for word-

segmentation and that the combination of several of these cues 

makes the segmentation task easier even under conditions that 
are less than ideal. Furthermore, infants also might be “able to 

detect regions of clear speech, and treat the beginnings of such 

regions as likely word boundaries” (Ibid., p. 540). 

 
3.2. Multiple Cue Integration Models 
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Research with children has shown that language contains 
multiple statistical cues and that children are able to access this 

information (e.g., Monaghan & Christiansen, 2008). Having 

access to more than one source of information can simplify the 
language-learning task because children learn over time to 

integrate the information from several cues into a coherent 

whole. Given that multiple cue integration assists children in 

language learning, it is desirable to simulate this process in 
computational modeling. One might predict that models that can 

access the multiple sources of statistical information that are 

contained in the language input will out-compete models that 
rely only on one source of information. Recently many 

researchers have begun to test whether it is possible to simulate 

the effects of multiple cue integration with computational models 
(for overview see Monaghan & Christiansen, 2008). The 

challenge is to design models that can access simultaneously 

several cues and combine the information to assist word-

segmentation. Blanchard et al. (2010) propose that infants can 
learn individual words based on frequent occurrence (e.g., their 

name, ‘mom’, frequent function words) and/or language specific 

phonotactic constraints (stress patterns, allophonetic variation, 
etc. as discussed in chapter 4). According to Blanchard et al., 

frequently occurring words form the first tiny lexicon, which 

allows the learner to infer some phonotactic constraints. This 

information in turn can help to recognize additional words. This 
combination of these two cues solves one important problem that 

beginning language learners face: how can they know which 

phonotactic constraints apply before they know words and vice 
versa. Thus, “knowledge of familiar words, combined with 

increasingly refined phonotactic constraints, support and 

reinforce each other in speech segmentation” (Blanchard et al., 
2010, p. 491). 

Blanchard et al.’s model PHOCUS relies on very basic 

assumptions about language learning. Beginning with an empty 

lexicon, it incrementally adds items to the lexicon, based on 
phonemes that occur together (probabilistic and phonotactic 

cues). Phonemes that occur within frequent words have high 
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transitional probabilities while phonemes that cross word 
boundaries have low transitional probabilities (e.g. Saffran et al., 

1996). In addition to these transitional probabilities, which are 

helpful to detect word boundaries, Blanchard et al.’s model could 
exploit phonotactic cues. Specifically, when the model 

encountered an unfamiliar word, it could rely on two kinds of 

phonotactic cues (phoneme combinations and occurrence of at 

least one syllabic sound per word; for details see Ibid., pp. 496 - 
501). 

Blanchard et al. could show that the combination of these 

two simple cues allowed a performance of 76-81% 
precision/recall scores for an English test corpus. Unexpectedly, 

the same model performed substantially worse (19 - 47% 

precision/recall scores) on a Sesotho corpus (Ibid,. p. 503). This 
result “highlights the importance of testing acquisition models on 

data from a variety of languages because the results can be so 

different from what is obtained with English corpora” (Ibid., 

p.505). The authors explain this difference in performance with 
the fact that the most frequent word in the Sesotho sample is 

monosyllabic. This results in a very high percentage of over-

segmentation errors from which the model cannot recover. 
Obviously, children learning Sesotho are able to master the word 

segmentation task. This indicates that they cannot rely on the 

same cues as the model used by Blanchard et al.. A model that 

incorporates more cues than the Blanchard et al. model 
simultaneously might succeed in the Sesotho word segmentation 

task. 

The finding that a model that successfully simulates one 
aspect of language acquisition in one language may perform 

poorly on the same aspect when exposed to a different language 

is important because any child can learn any human language 
(Chomsky, 2005, 2007, 2012; McGilvray 2006; Smith 1999). 

Children acquiring different languages have to rely on different 

cues because each language has its own hierarchy of cues due to 

lexical, phonological specificities. Thus, computational modeling 
has shown that the hypothesis that language learning follows 

essentially the same steps regardless of the particular language 
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learned needs to be re-evaluated. We cannot rely on a priori 
assumptions about the uniform nature of language learning. 

Instead we need to develop testable hypotheses and models and 

adjust these in light of the obtained results. 

 

3. 4. Modeling of Complex Aspects of Syntax and Semantics 

It has been shown early that some aspects of syntax acquisition 

can be modeled. One of the earliest models (Rumelhart & 
McClelland, 1986) simulated the acquisition of the English past-

tense. It showed that a two-layered feed-forward neural network 

architecture could learn mappings between phonological 
representations of stems and corresponding past tense forms of 

English verbs and simulate frequency effects and the U-shaped 

learning curve for the acquisition of irregular verbs. These early 
models were criticized for their psycholinguistic implausibility 

(e.g., Pinker & Prince, 1988) and later models addressed this 

criticism. One of these later models (Plunkett & Juola, 1999) was 

using a single-system connectionist network to produce the 
plurals and past tense forms of a monosyllabic English nouns and 

verbs. This model mimics important features of the acquisition of 

English noun and verb morphology in young children (e.g., 
initial error-free period of performance followed by a period of 

intermittent over-regularization of irregular nouns and verbs) and 

acquires nouns and verbs in a similar manner as young children 

do. For example, the network exhibits a general advantage in 
acquiring noun morphology before verb morphology and the 

network model predicts the same developmental shift in the 

relative ease of learning irregular nouns and verbs as observed in 
human children. 

More recently it has also been shown that combining 

models can increase the generality of the models across 
inflection types, grammatical classes, and across languages. 

Karaminis and Thomas (2010) combined elements of previous 

connectionist models of morphology to implement a generalized 

inflectional system. Their “Multiple Inflectional Generator” 
(MIG) considered three grammatical classes (nouns, verbs, and 

adjectives) and multiple inflections for each grammatical class 
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(e.g., nouns: base forms, plurals, and possessives) (Karaminis & 
Thomas, 2010, p.732). Their preliminary results showed that 

models MIG can reproduce error patterns and accuracy levels of 

inflection acquisition:  
 

In both English and Modern Greek, an Optional Infinitive 

stage was observed, even though the character of that stage is 

different in each language (unmarked stems vs. 3rd person 

singular). Generalization rates of the past tense rule were 

high for novel stems, even for phonotactically illegal stems. 

MIG captured the order of emergence of different inflection 

types for different grammatical classes. And it was able to 

capture developmental patterns for two languages of different 
morphological complexity. (Karaminis & Thomas, 2010, 

p.734) 

 

Critics of connectionist work might argue that, more 

complicated tasks could remain forever beyond the capability of 

computational modeling. A complete discussion of this question 
would require addressing the problem of artificial intelligence 

and is beyond the scope of this paper. Instead, I will highlight 

now some recent work involving the acquisition of complex 
aspects of syntax and semantics. I begin with two models that 

simulate peculiarities of French spelling and English grammar 

respectively. In both cases performance that seems to indicate 

explicit knowledge of abstract rules was achieved by mechanisms 
that rely only on statistical features of the input. 

Computer simulations of certain aspects of language 

acquisition are most useful when they model closely the relevant 
behaviour of children. For this reason Pacton et al. (2001) tested 

first whether children from kindergarten to grade five use 

statistical cues to track orthographic language regularities. They 
found that kindergarten children were able to use statistical 

regularities in the input to judge the ‘word-likeness’ of nonsense 

letter strings. Consistent with the statistical information available 

in the input, children judged letter strings as less word-like when 
they began with a double vowel than with a double consonant. 

Further, children from grade 2 onward made this distinction even 
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for consonants that are never doubled. Pacton et al. duplicated 
these results with connectionist networks (SRNs). Like the 

children, the SRNs became sensitive to the frequency and 

placement of doubled letters. The SRNs lack a mechanism for 
rule-based abstraction but still successfully simulate the 

performance of children. This led Pacton et al. to conclude that 

domain specific mechanisms for rule-based abstraction are 

unnecessary to account for this aspect of language performance.  
Another aspect of language acquisition that seems to push 

the limits of computational modeling is the acquisition of 

complex verb-argument structure, such as the prepositional dative 
(PD) vs. direct object dative (DOD). Many English verbs (e.g., 

tell, give, throw, bring) can occur in both constructions. For 

example ‘to give’ occurs in “Stefan gives a book to Katrina” (PD) 
and in “Stefan gives Katrina a book” (DOD). However, some 

verbs (e.g. confess, take, say, send) occur only in PD. Thus, when 

encountering a new verb, children cannot reliably generalize from 

previous examples because they do not know in which of the two 
groups the new verb belongs. Yet, seemingly, children are able to 

use novel verbs correctly, which has lead several researchers 

(e.g., Pinker, 1989; Gordon, 1990; Smith, 1999; McGilvray 2006) 
to conclude that some form of innate knowledge is required to 

explain this observed performance. Thus, the question arises 

whether computational models can achieve a child-like 

performance when acquiring PD and DOD constructions. Perfors 
et al. (2010) present a domain-general hierarchical Bayesian 

model for the acquisition of PD and DOD construction. These 

researchers take as point of departure the work of Wonnacott et 
al. (2008). Wonnacott et al. found that human listeners are 

sensitive to distributional cues in language input and can use 

these cues to make productive generalizations. The computational 
model of Perfors et al. was informed by the knowledge that had 

been gathered from work with human children. They developed a 

computational model that explains “the acquisition of verb 

constructions as a rational statistical inference” (Perfors et al., 
2010, p. 609). 
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Essentially this model can take advantage of positive and 
implicit negative evidence that is provided in the input. It keeps 

track of whether or not a given verb occurs in PD and DOD 

constructions. Assuming that the permissible usage is fixed, the 
model can use new data to make increasingly better predictions. 

“Each time a verb is encountered in one of the two competing 

structures, it is not encountered in the other, and this provides 

cumulative evidence against a grammar that allows this usage” 
(p. 630, original emphasis). This results in a learning outcome 

closely resembling that of human children: performance is very 

good for frequently occurring verbs but poor for verbs that are 
rarely encountered. Even though the model is capable of learning 

the distinction between alternating and non-alternating verb 

classes on the basis of syntactic input alone, the authors do not 
suggest that children exclude semantic information when learning 

this distinction. But the fact that it is possible for a relatively 

simple model to simulate this aspect of language acquisition 

suggests that the input contains an abundance of statistical 
information that can be used for inferences even before the 

learner has access to semantic information. 

Reali and Christiansen (2005) suggest that the language 
input contains rich indirect statistical information that can be 

accessed by the language learner. Using the example of auxiliary 

(AUX) fronting in complex polar interrogatives they show that 

simple learning devices, such as neural networks, are capable of 
exploiting such statistical cues. This is an important finding 

because the problem of polar interrogatives has played an 

important role in language acquisition debates since the 1960s. In 
English declarative sentences are turned into questions by 

fronting the correct auxiliary. Chomsky (1965) used the 

following example to illustrate the problem. The declarative 
sentence ‘The man who is hungry is ordering dinner.’ is 

grammatically turned into a question in (1a) but ungrammatically 

in (1b): 
 
(1a) Is the man who is hungry ordering dinner?  

(1b) *Is the man who hungry is ordering dinner? 
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Because this fronting is not based on a structure-
independent rule that could be readily learned from the available 

input but on a structure-dependent rule (Chomsky, 1980), it has 

been argued that the knowledge allowing children to produce 
correct auxiliary questions must be innate (e.g., Chomsky 1965, 

1980; Crain 1991; Lightfoot, 1991; Smith, 1999; Crain & 

Pietroski, 2001; Crain & Pietroski 2002; Legate & Yang 2002; 

McGilvray, 2006). 
Reali and Christiansen (2005) show a possible alternative 

to this suggestion. They trained simple statistical models based 

on pairs (bigrams) and triples (trigrams) of words of child-
directed speech. Then they tested the models on sentences that 

consisted of correct polar interrogatives (e.g., Is the man who is 

hungry ordering dinner?) and incorrect ones (e.g., Is the man 
who hungry is ordering dinner?) that had not been present in the 

training corpus (Reali & Christiansen, 2005, p. 1010). They 

found that the models classified correctly 96 out of 100 

grammatical test sentences and concluded that these “results 
indicate that it is possible to distinguish between grammatical and 

ungrammatical AUX questions based on the indirect statistical 

information in a noisy child-directed speech corpus containing no 
explicit examples of such constructions” (Ibid., p. 1014). 

Furthermore, their models were also able to simulate the 

production of grammatical AUX questions. This performance is 

based on frequency patterns in the input. Sentence chunks that are 
frequently encountered create a bias towards grammatical 

question-production even in the absence of direct positive 

evidence. Assuming that the models do not have innate 
knowledge of grammar, it seems to follow that the statistical 

information that is explicitly and implicitly available in the input 

can be used to produce grammatical AUX questions. 
Many other researchers have reported similar results (e.g., 

Redington et al., 1998; Ellefson & Christiansen, 2000; Mintz, 

2002; Perruchet & Vinter, 2002; Christiansen & Kirby, 2003). 

Again, it is important to establish that modeling closely mirrors 
abilities and strategies used by human learners. Mintz (2002) 

showed that adults who learned an artificial language naturally 
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formed abstract grammatical categories solely based on 
distributional patterns of the input data. This could be evidence 

for rapidly engaged distributional mechanisms that also play a 

role in the early stages of language acquisition when the learner 
lacks access to other information (semantic and syntax). Mintz 

claims that his experiment “shows evidence of categorization 

mechanisms that function from distributional cues alone” (Mintz, 

2002, p. 684).  
It has been shown that computational models can replicate 

other important aspects of human performance. Lewis and Elman 

(2001) trained simple recurrent networks on data from an 
artificial grammar. This generated questions of the form “AUX 

NP ADJ?” and sequences of the form “Ai NP Bi”. During 

training the SRNs encountered no relevant examples of polar 
interrogatives. In this experiment it has been shown that the 

SRNs were better at making predictions for multi-clause 

questions involving correct auxiliary fronting than for those 

involving incorrect auxiliary fronting. 
Christiansen and Kirby (2003) demonstrate that a general 

model of sequential learning that relies on the statistical 

properties of human languages can account for many aspects of 
language learning. Similar to the experiments on statistical 

learning discussed above, artificial-language-learning 

experiments showed that human subjects and SRNs that were 

trained on ungrammatical artificial languages made significantly 
more errors when predicting the next word of a string than 

subjects and SRNs that were trained on grammatical artificial 

languages. Languages are considered grammatical when they 
contain (at least one of the) universal properties of natural 

languages (e.g., branching direction, subjacency) and 

ungrammatical when they lack these properties. The authors 
suggest that the close performance similarities of human subjects 

and SRNs could indicate that both rely on similar learning 

mechanisms. 

Ellefson and Christiansen (2000) demonstrated that SRNs 
were significantly better at predicting the correct sequence of 

elements in a string of a ‘natural language’ than of an ‘unnatural 
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language’. The ‘natural language’ contained subjacency 
constraints, and the ‘unnatural language’ lacked these constraints. 

For example, SRNs trained on languages containing the ‘natural’ 

patterns exemplified in sentences (2) and (5) did significantly 
better than those trained on languages allowing the ‘unnatural’ 

patterns exemplified in (3) and (6): 

 
(1) Sara heard (the) news that everybody likes cats. 
(2) What (did) Sara hear that everybody likes? 

(3) *What (did) Sara hear (the) news that everybody likes? 

(4) Sara asked why everyone likes cats. 

(5) Who (did) Sara ask why everyone likes cats? 

(6) *What (did) Sara ask why everyone likes?  

(Ellefson & Christiansen, 2000, p. 349f). 

 

Ellefson and Christiansen were able to show that SRNs trained 
on the same input data are sensitive to the statistical properties of 

the input and perform significantly better on grammatical than on 

ungrammatical test sentences.  
Other researchers obtained similar results. For example, 

Perruchet and Vinter (2002) defend a plausible model (PARSER) 

that extracts 1-5 syllable words from language input based on the 

information that is contained in small chunks of the l input. They 
demonstrate that complex material can be processed as a 

succession of chunks that are comprised of a small number of 

primitives
4
. According to these authors, associative learning 

mechanisms can fully account for this aspect of language 

learning. When SRNs and other computational models are able to 

acquire statistical knowledge of the input based on positive 
examples alone, then it seems to be at least imaginable that 

children can pick up this information as well. Whether or not 

children rely on the same mechanisms as SRNs remains a point 

of debate (for some critical suggestions see Marcus, 1999). But 
the existence of these mechanisms, again, casts some doubt on 

the necessity of UG. 

                                                   
4 During the performance of the segmentation task repeated perceptual chunks 

evolve into processing primitives which in turn determine the way further 
material is perceived. 
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We have seen that not only word-segmentation but also the 
acquisition of complex grammatical forms could be based on 

statistical properties of the input. Statistical learning occurs in 

several species. It has been confirmed in non-human animals 
(Hauser et al., 2001; Terrace, 2001), and there is evidence that it 

might have been recruited to support language learning in human 

infants (Saffran et al., 1996; Fiser & Aslin, 2002; Maye et al., 

2002). Whether or not statistical learning mechanisms can 
account for all aspects of language acquisition is a matter of 

ongoing debate. While this debate is far from over, it has become 

clear that proponents of the LAD need to rule out the possibility 
that data-driven general-purpose learning mechanisms such as 

statistical learning can account for the acquisition of human 

language. 
 

3.5. Recursion 

In the final section of this paper, I discuss some attempts to 

model one of the often-cited ‘hallmarks’ of human language: 
recursion. Recursion has played a central role in Chomsky’s 

arguments for the uniqueness of language (Chomsky, 1966, 

1975, 1980, 1986, 2012; Hauser, Chomsky, & Fitch, 2002; Fitch, 
Chomsky & Hauser, 2005). It allows for unbounded linguistic 

creativity and remains at the core of the Minimalist Program 

(Chomsky, 1995). Thus, the possibility that this unique feature of 

language can be simulated by computational models casts some 
doubt on the proposal that recursion is necessarily an “innate 

property of grammar or an a priori computational property of the 

neural systems subserving language” (Christiansen & 
MacDonald, 2009, p.127). 

There are different types of recursive constructions as well 

as several levels of complexity within these types. Left- and 
right-branching recursion (LBR, RBR) is fairly common in many 

languages. One complex example of RBR in English is: “This is 

the dog, that chased the cat, that killed the rat, that ate the cheese, 

that lay in the house that Jack built” (Sampson, 2001, p.133). 
Even though this sentence involves 4 levels of RBR it can be 
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processed and understood by an average native speaker, and will 
generally be judged as grammatical. 

Center embedded recursion (CER) on the other hand is 

more difficult to process, as this example shows: “When the pain, 
that nobody, who has not experienced it can imagine, finally 

arrives, they can be taken aback by its severity” (Ibid., p. 20). 

This sentence only involves 2 levels of CER, yet it is difficult to 

process, and it takes a special effort to understand it. These 
differences between RBR/LBR and CER led numerous linguists 

to the belief that constructions containing higher-level CER are 

absent in human languages (e.g., Reich & Dell, 1977; Reich, 
1969; Labov, 1973). While empirical research has shown by now 

that higher level CER constructions do occur in written and 

spoken language (for discussion see Sampson, 2001), it is 
generally accepted that these constructions are rarer than and 

judged as less grammatical than LBR/RBR at the same level of 

complexity. This raises an interesting problem for nativism. If 

recursion is at the heart of linguistic creativity and if language 
depends on an innate, genetically specified mechanism, then it is 

curious that different types of recursion pose different demands 

on language processing. Should we not expect that such closely 
related properties of language as LBR/RBR and CER are 

underwritten by very similar genetically specified mechanisms? 

This seemed indeed to be the default assumption of many 

nativists (e.g., Miller & Chomsky, 1963; Marcus, 1980; Church, 
1982; Stabler, 1994; Chomsky, 2012). It was proposed that the 

problems with multiple CER arise not from linguistic but from 

psychological mechanisms (e.g., memory and attention span 
limitations, difficulties to paraphrase and fluently read sentences 

with multiple CER, for discussion see Sampson, 2001; 

Christiansen & MacDonald, 2009). 
Recently the assumption that innate mechanisms 

underwrite the acquisition of multiple CER has been challenged 

(e.g., MacWhinney, 2004; Sampson, 2001; Christiansen & Mac 

Donald, 2009). Computational modeling of recursion has two 
distinct purposes. First, if it can be shown that non-domain 

specific models can imitate the performance regarding recursive 
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abilities of human speakers, the assumption that a domain-
specific innate faculty is required for recursion is challenged. 

Second, if it can be shown that models that are not limited by 

memory and other non-linguistic factors process and comprehend 
LBR/RBR and CER in a similar way to humans, then it appears 

plausible to suggest that the differences are of a linguistic nature. 

Elman (1993) tested the hypothesis that “connectionist 

networks possess the requisite computational properties for 
modeling those aspects of natural language which are beyond the 

processing capacity of finite state automata [e.g. recursion]” 

(Elman, 1993, p. 75). From an artificial grammar he generated an 
input corpus of sentences with the following properties: (i) 

subject nouns and their verbs agreed for number; (b) verbs either 

required direct objects or optionally permitted direct objects or 
precluded direct objects; and (c) sentences could contain multiple 

embeddings in the form of relative clauses and subordinate 

clause (for full details see Elman, 1993, pp. 75 - 77). The 

network was trained to take one word at a time and predict what 
the next word would be. To make correct predictions the network 

needs to represent internally grammatical dependencies of the 

input. Elman found that networks that were trained on input of 
slowly increasing complexity achieved high performance and 

“generalized to a variety of novel sentences which systematically 

test the capacity to predict grammatically correct forms across a 

range of different structures” (Ibid., p. 77). On the other hand, 
networks that had access to the entire input corpus at once 

performed very poorly. Finally, networks that had been exposed 

to the complete input corpus from the beginning but were given a 
slowly increasing memory capacity (for details see pp. 78-79) 

had a prolonged initial learning phase but performed very well 

after that. 
Elman claims that children will probably neither encounter 

the first nor the second condition. That is the input is never 

carefully matched to the language acquisition stage the child is at 

(condition 1), and the child is never able to make use of all the 
information that is contained in the complete input (condition 2). 

But it is plausible to assume that when children are learning, they 
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are in a similar position to that of the networks in condition 3: 
they are faced with complex input, but their ability to access the 

input is limited. Over time this ability improves just as in the 

networks where “the learning mechanism itself was allowed to 
undergo ‘maturational changes’ (in this case, increasing its 

memory capacity) during learning” (Ibid., p. 79). 

There are two important points here. First, it could be 

shown that networks are able to ‘learn’ even such complex 
grammatical structures as CER from the input. This, again, 

indicates that a domain-specific mechanism may not be required 

to achieve this result. At the very least it shows that the statistical 
information that is present in the input could be sufficient for the 

acquisition of CERs. Second, the fact that networks that are 

‘handicapped’ in some way (by exposure to limited input or 
limited memory capacity) are more successful ‘learners’ than 

networks that have access to the complete input corpus and 

maximal memory capacity from the beginning had not been 

predicted by the experimenter. It was actually necessary to 
perform the experiments to obtain “a deeper understanding of the 

principles which constrain learning in networks” (Ibid., p. 85). 

As our understanding of these principles improves, our ability to 
develop better computational models and relevant test procedures 

for children improves as well. 

Christiansen (1994) trained SRNs on a recursive artificial 

language and found that performance differed for higher levels of 
complexity of RBR and CER. Christiansen and Chater (1999) 

attempted to model the human processing performance for RBR, 

CER and cross-dependency recursion (CDR). For this purpose 
they trained “connectionist networks on small artificial 

languages, which exhibit the different types of recursive structure 

found in natural language” (Christiansen & Chater, 1999, p. 
159). They found that the networks performed well on RBR and 

single-embedded CER and CDR but that performance quickly 

degraded for CER and CDR when additional levels of 

embedding were added. Christiansen and Chater suggest that 
what “constrains the performance of the SRN appears to be 

architectural limitations interacting with the statistics of the 
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recursive structures” (Ibid., p. 172). They also observed that, 
even though the models were not trained on constructions of 

recursive depth four, “there was no abrupt breakdown in 

performance for any of the three languages at this point... This 
suggests that these models are able to generalize to at least one 

extra level of recursion beyond what they have been exposed to 

during training” (Ibid., p. 182). 

The performance of SRNs closely resembles that of 
humans, who also can process several levels of RBR but have 

difficulties processing doubly or more highly embedded CER 

and CDR. Christiansen and Chater (1999) observe that the 
difficulty of processing center-embedded structures is not 

confined to a linguistic context. They cite Larkins & Burns 

(1977), who demonstrated that when subjects were asked to 
name center-embedded pairs of letters and digits, they 

experienced the same difficulty as when processing center-

embedded sentences. Christiansen and Chater hypothesize that 

non-linguistic processing constraints could be to blame for the 
poor performance in the CER/CDR tasks. The findings that 

SRNs, which are not language specific, show the same 

performance limitations could support this hypothesis. These 
results also have consequences for the nativist/empiricist debate. 

Christiansen and Chater propose that 

 
These results suggest a reevaluation of Chomsky’s (1957, 
1959) arguments that the existence of recursive structures 

in language rules out finite state and associative models of 

language processing. These arguments have been taken to 

indicate that connectionist networks, which learn 

according to associative principles, cannot in principle 

account for human language processing. But we have 

shown that in principle this argument is not correct: 

Connectionist networks can learn to handle recursion with 

a comparable level of performance to the human language 

processor. (Christiansen & Chater, 1999, p.199) 

 

Overall, recent work in modeling has provided some reason for 

questioning the cogency of ‘in principle’ arguments against 

connectionism.  
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It might be argued that, nevertheless, some aspects of the 
models introduced so far are problematic. For example, the 

training procedures do not reflect the language-acquisition 

process in children, and the input may contain more examples of 
RBR, CER and CDR structures than input to which children are 

exposed. Christiansen and Chater do not claim that their model 

replicates the acquisition process in children. Their goal was to 

show that the statistical information contained in the input is 
sufficient for some mechanism to acquire the ability to process 

recursive structures. This goal has been achieved. 

Other work has also shown that the language input 
contains sufficient implicit information to allow for the 

acquisition of recursive structures. Christiansen and MacDonald 

(2009) show that a connectionist model is capable of simulating 
human performance of processing complex center-embeddings in 

German and cross- dependencies in Dutch. As previously 

discussed, these recursive constructions are more difficult to 

process than the simpler, right- and left-recursive structures. The 
authors suggest, “the ability to process recursive structure is 

acquired gradually, in an item-based fashion given experience 

with specific recursive constructions” (Christiansen & 
MacDonald, 2009, p.127). The SRN was trained on an artificial 

context-free grammar with a 38-word vocabulary (for details see 

Ibid., pp. 130-132) and then tested on novel sentences. The SRN 

was able to acquire complex grammatical regularities and “to 
make nonlocal generalizations based on the structural regularities 

in the training corpus” (Ibid., p. 132). Another important finding 

was that for both humans and SRNs doubly embedded CER were 
harder to process than doubly embedded CDR. This confirms the 

finding of Christiansen & Chater, 1999). The close fit to human 

data also extended to novel predictions where the models made 
grammaticality judgments similar to those of human subjects 

(Christiansen & MacDonald, 2009, p.149). Obviously there are 

some limitations to these models. The vocabulary is very small, 

and only a small subset of grammatical regularities is covered. 
Whether or not future models can be scaled up to the full 

complexity of human language remains to be seen. 



Christina Behme 

Linguagem & Ensino, Pelotas, v.17, n.1, p. 87-128, jan./abril 2014 117 

Models that simulate the conditions under which human 
children learn language perform similarly to children. When 

children acquire language, the processing and production of 

recursive structure emerges gradually over time (Dickinson, 
1987). This is contrary to Chomsky’s assumption (1980) that the 

processing and production of recursive structure is virtually 

instantaneous. The work of Christiansen and MacDonald (2009) 

showed that, just like human children, SRNs do have a learning 
curve and their performance improves over time. Overall 

computational modeling of the acquisition of recursive structure 

has shown that there are several parallels between the 
performance of children and SRNs. This fact alone, of course, 

does not prove that the mechanisms exploited by SRNs are the 

same as those used by children. But the findings discussed here 
indicate that an innate domain-specific mechanism is not 

necessary to account for the acquisition of these structures. And 

the results obtained can direct future research and, it is hoped, 

provide insights into the mechanisms that allow human children 
to acquire language. 

 

4. Conclusions 

 

I have discussed computational models of language acquisition 

and evaluated whether or not the criticisms proposed by 

Chomsky (2000, 2009) and McGilvray (2009) apply. Based on 
the models I discussed, I suggest that the main points of criticism 

are not justified. Connectionists do not hold that neural nets (and 

by extension the models they use to simulate those nets) are 
initially “undifferentiated, approximating Locke’s blank slate” 

(McGilvray, 2009, p. 110). They acknowledge that there is some 

structure initially built into their models and that this structure is 
relevant to the performance of the models. What is at issue for 

them is not whether or not neural nets are initially structured 

(they are) but whether or not this structure supports domain- 

specific learning or learning across different domains. 
Empirical  work has shown, it is not necessary to rely on 

an explicit notion of phoneme to succeed in the word 
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segmentation tasks. The statistical information present in the 
input is sufficient for the success of segmentation models. 

Computational models show that it is possible to apply what has 

been learned from the training set to the test set without the need 
of explicit knowledge of the underlying structural rules and that 

the models can perform as if they had learned rules based on 

exposure to the statistical information contained in the input 

alone.  In some cases modeling had results that did not conform 
to the predictions made prior to modeling. In these cases the 

obtained results influenced future research. First the experiments 

were repeated. When the repetition confirmed the earlier findings 
the theoretical assumption on which the models originally had 

been based were adjusted.  

In spite of some impressive successes, computational 
models are still a considerable distance away from simulating all 

aspects of language acquisition. Recently work has begun to 

simulate more complex aspects of language acquisition from 

multiple-cue integration (e.g., Christiansen, et al., 2010; Rytting 
et al., 2010; Christiansen & MacDonald, 2009; Onnis et al., 

2009; Monaghan & Christiansen, 2008), and language 

acquisition in different languages (e.g., Freudenthal et al., 2010; 
Jaroz, 2010; Blanchard et al., 2010; Christiansen & MacDonald, 

2009), word-sense disambiguation (e.g., Waterfall et al., 2010) to 

the construction of a complete, empirical, generative model of 

the learning of syntactic patterns (Waterfall et al., 2010). Yet, we 
are still a considerable distance away from any model that 

simulates the complete process of language acquisition. Much 

interdisciplinary research remains to be done before we can hope 
to answer the question whether or not it will be eventually 

possible to combine many of the current ‘small scale’ models or 

if the complexity of the task exceeds the ability of data-driven 
models.  
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